Computer/ETC

ANCHOR

ANCHOR - 파일 내의 특정 섹션을 나타내기 위해 사용됩니다. TODO - 완료를 기다리는 항목입니다. FIXME - 버그 수정이 필요한 항목입니다. STUB - 생성된 기본 스니펫에 사용됩니다. NOTE - 특정 코드 섹션에 대한 중요한 메모입니다. REVIEW - 추가 검토가 필요한 항목입니다. SECTION - 영역을 정의하기 위해 사용됩니다 (‘계층적 앵커’ 참조). LINK - 편집기 내에서 열 수 있는 파일로 연결하기 위해 사용됩니다 (‘링크 앵커’ 참조).

ANCHOR

Computer/C#

VS에서 Windows Forms 앱 과 Windows Forms 앱(.NET Framework) 차이

"Windows Forms 앱"과 "Windows Forms 앱(.NET Framework)" 사이의 주된 차이점은 사용되는 .NET 플랫폼의 버전과 관련이 있습니다. 이 두 용어는 종종 혼용되어 사용되지만, 기술적으로는 다음과 같은 차이점이 있습니다: Windows Forms 앱(.NET Framework): 이것은 오리지널 .NET Framework를 기반으로 하는 Windows Forms 애플리케이션을 가리킵니다. .NET Framework는 Microsoft에 의해 개발된 소프트웨어 프레임워크로, Windows 운영 체제에서 주로 사용됩니다. 이 플랫폼은 Windows Forms를 포함한 여러 UI 프레임워크를 지원하며, 2002년부터 여러 버전이 출시되었습니다. .NET Framework 기반의..
Computer/Machine learning models

RNN에서 사용되는 'input_shape' 알아보자

input_shape에서의 시퀀스 길이와 특성 수는 순환 신경망(RNN) 또는 그 변형인 LSTM, GRU 레이어에 입력되는 데이터의 구조를 나타냅니다. 이들은 시계열 데이터나 텍스트 데이터와 같이 순차적인 데이터를 처리할 때 사용됩니다. 시퀀스 길이 (Sequence Length): 이는 입력 데이터의 시간 단계 또는 순차적인 단계의 수를 나타냅니다. 즉, 하나의 시퀀스 내에 있는 연속적인 데이터 포인트의 개수입니다. 예를 들어, 시계열 데이터에서 시퀀스 길이는 고려하고자 하는 시간 프레임의 길이가 될 수 있습니다. 만약 하루 동안 시간별 데이터를 고려한다면, 시퀀스 길이는 24가 될 수 있습니다. 특성 수 (Number of Features): 이는 각 시간 단계에서의 관찰된 특성(변수)의 수를 나타..
Computer/Machine learning models

LSTM(Long Short-Term Memory)과 GRU(Gated Recurrent Unit)의 특징 비교

LSTM(Long Short-Term Memory)과 GRU(Gated Recurrent Unit)는 둘 다 순환 신경망(RNN)의 변형으로, 시퀀스 데이터(예: 시계열 데이터, 텍스트 등)를 처리하는 데 사용됩니다. 두 구조 모두 기본 RNN의 단점인 장기 의존성 문제를 해결하기 위해 고안되었으나, 그들의 내부 구조와 작동 방식에서 차이가 있습니다. LSTM의 특징 게이트: LSTM은 셀 상태를 조절하기 위해 세 개의 게이트(입력 게이트, 출력 게이트, 망각 게이트)를 사용합니다. 이 게이트들은 네트워크가 장기간에 걸친 의존성을 학습할 수 있도록 돕습니다. 셀 상태: LSTM은 셀 상태라는 추가적인 정보 흐름을 가지고 있으며, 이는 네트워크를 통해 정보를 장기간에 걸쳐 전달하는 데 도움을 줍니다. 매개..
Computer/Machine learning models

recurrent_activation

recurrent_activation recurrent_activation은 순환 신경망(RNN)의 게이트 제어에 사용되는 활성화 함수를 지정하는 옵션입니다. LSTM과 GRU 같은 RNN 구조에서 게이트는 셀의 상태를 어떻게 업데이트할지 결정하는 중요한 역할을 합니다. 여기서는 recurrent_activation에 사용될 수 있는 몇 가지 일반적인 활성화 함수와 그 설명을 제공합니다: 1. Sigmoid ('sigmoid') 설명: sigmoid 함수는 출력을 0과 1 사이로 제한합니다. 이 특성 때문에 sigmoid는 게이트의 열림과 닫힘을 제어하는 데 주로 사용됩니다. 출력이 1에 가까우면 게이트는 완전히 열리고, 0에 가까우면 게이트는 완전히 닫힙니다. 사용 예: LSTM과 GRU의 입력 게이트..
Computer/Machine learning models

Epochs 와 Batch Size

epochs와 batch_size는 신경망을 훈련할 때 사용되는 두 가지 중요한 하이퍼파라미터입니다. 이들의 역할은 다음과 같습니다: Epochs 정의: 한 epoch은 전체 데이터 세트가 신경망을 통해 한 번 전달되는 과정을 의미합니다. 다시 말해, 모든 훈련 데이터가 신경망을 한 번 통과하고 가중치가 업데이트되는 과정이 하나의 epoch입니다. 용도: epochs=100이라는 설정은 전체 훈련 데이터 세트를 신경망을 통해 총 100번 전달하겠다는 것을 의미합니다. 이를 통해 모델이 훈련 데이터로부터 패턴을 학습하고 성능을 개선할 기회를 제공합니다. 중요성: 너무 적은 수의 epoch는 모델이 데이터에서 충분한 패턴을 학습하지 못하게 할 수 있으며, 너무 많은 epoch는 과적합(overfitting)..
Computer/Machine learning models

데이터 분할 : train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42) 머신러닝 모델을 훈련시키기 위해 전체 데이터셋을 훈련 데이터와 테스트 데이터로 분할하는 과정을 나타냅니다. train_test_split 함수는 scikit-learn 라이브러리의 model_selection 모듈에 포함되어 있으며, 데이터를 무작위로 훈련 세트와 테스트 세트로 나누는 데 사용됩니다. 각 부분의 구성 요소를 자세히 살펴보겠습니다: X_scaled: 모델 훈련에 사용할 피처(독립 변수)입니다. 이 변수는 스케일링된 데이터를 나타내며, 스케일링은 피처들의 범위를 일정하게 맞추기 위해 수행됩니다. 스케일링은 모델의 성능을 ..
Computer/Micro:bit

빗방울 피하기

마이크로 비트를 제어하는 기본 문법을 학습하여 게임을 만든다. # 게임셋팅 def gameSetting(): global start, gameSpeed, sprite, direction start = False gameSpeed = 500 sprite = game.create_sprite(2, 4) # sprite가 처음 배치가 되면 오른쪽을 바라보고 있다. 초기 세팅을 해주는것. direction = "right" rainSetting() # 게임오버 만들기 def spriteDie(): global start if sprite.is_touching(rain1) or sprite.is_touching(rain2) or sprite.is_touching(rain3): rain1.delete() rain2..
Computer/ETC

RS422 / RS485 차이점

RS422와 RS485는 모두 직렬 통신 인터페이스로 사용되는 표준이지만 몇 가지 중요한 차이점이 있습니다. RS422는 포인트 투 포인트 연결을 지원하며, RS485는 멀티포인트 네트워크를 구성할 수 있습니다. RS422는 전송 거리가 짧고 속도가 빠르며, RS485는 전송 거리가 길고 멀티드롭 환경에 적합합니다. RS422는 주로 데이터 통신에 사용되며, RS485는 주로 산업 자동화 및 제어 시스템에서 사용됩니다. RS422는 두 개의 신호선(데이터+와 데이터-)을 사용하고, RS485는 세 개의 신호선(데이터+와 데이터-, 그리고 공통 GND)을 사용합니다. RS422는 전송 속도가 일정하지만 RS485는 전송 속도를 다양하게 조정할 수 있습니다. 이러한 차이점을 고려하여 RS422와 RS485를..
EIGHTBOX
EIGHTBOX
hwaya.

programmer

🌵나누고 싶은 이야기와 생활정보 : 소소한 행동에 감동하며 기뻐하고 하루하루에 감사하는 사람

Today Yesterday Total
최신글